Monthly Archives: January 2015

La funzione size di Matlab

MATLAB

La funzione size di Matlab rappresenta un modo per ricavare le dimensioni di un array multidimensionale, infatti ci consente di ricavare i valori di ogni dimensioni dell’array.

La sintassi della funzione size è la seguente:

d = size (X)
 [m, n] = size (X)
 size = m (X, dim)
 [D1, D2, D3 ,…, dn] = size (X),

Allora la seguente linea di codice:

d = size (X)

restituisce i valori di ogni dimensione della matrice X restituendola in un vettore con d (X) elementi. Se X è uno scalare, restituisce il vettore [1 1]. Mentre:

[m, n] = size (X)

restituisce la dimensione della matrice X in due variabili separate m e n. Così:

size = m (X, dim)

restituisce il valore della dimensione di X specificata dallo scalare dim. Infine:

[D1, D2, D3 ,…, dn] = size (X)

per n> 1, restituisce i valori delle dimensioni della matrice X nella variabili D1, D2, D3 ,…, dn, a condizione che il numero di n argomenti di uscita sia uguale a nDims (X).

La funzione size di Matlab

Esempio 1
Il valore della seconda dimensione di rand (2,3,4) è 3.

size = m (rand (2,3,4), 2)
m =
 3

La dimensione è fornita come un singolo vettore.

d = size (rand (2,3,4))
d =
 2 3 4

I valori di ciascuna dimensione vengono assegnati a una variabile separata.

[m, n, p] = size (rand (2,3,4))
 m =
 2
n =
 3
p =
 4

LINK DI APPROFONDIMENTO PER L’ARGOMENTO:

Le procedure ricorsive in ambiente Matlab

MATLAB

Le procedure ricorsive in ambiente Matlab rappresentano una soluzione a diversi problemi che si incontrano nella pratica comune, nella sostanza una procedura ricorsiva non rappresenta altro che un programma che nella sua esecuzione chiama se stesso.

La Ricorsione è una costruzione subdola che permette di chiamare una funzione in se stessa. Ci sono molti pericoli usando la ricorsione. Il primo è che, come con i cicli while, è possibile per la funzione di chiamare se stesso per sempre e non fornire mai una risposta. La seconda è che la ricorsione può causare calcoli ridondanti che, anche se possono essere conclusi, possono richiedere molto tempo. Il terzo pericolo è che, mentre un programma ricorsivo è in esecuzione ha bisogno di spazio in più per accogliere l’overhead della ricorsione.

Ecco un semplice esempio di ricorsione:

function y=twoexp(n)

% y=twoexp(n). procedura ricorsiva per la valutazione di y=2^n.
% La procedura effettua una valutazione solo se n è maggiore di zero.

if n==0, y=1;
   else y=2*twoexp(n-1);
end

Il programma ha una struttura ramificata. La condizione n == 0 è la base della ricorsione. Questo è l’unico modo per ottenere che il programma smetta di chiamare se stesso. La parte contenuta in else è la ricorsione. Notate come il twoexp (n-1) si verifica proprio lì nel programma che sta definendo twoexp (n)! Il segreto è che è chiamata a un valore inferiore, n-1, e continuerà a farlo fino a quando non si mette n = 0. Una ricorsione di successo chiama sempre un valore inferiore.

matlab

L’uso della ricorsione può rendere più semplice la programmazione, il vantaggio consiste nel fatto che le funzioni ricorsive possono venire scritte tenendo conto della definizione ricorsiva stessa, per cui si ottengono facilmente dei programmi corretti senza dover simulare lo stato della memoria.

La tecnica ricorsiva permette di scrivere algoritmi eleganti e sintetici per molti tipi di problemi comuni, anche se non sempre le soluzioni ricorsive sono le più efficienti. Questo è dovuto al fatto che comunemente la ricorsione viene implementata utilizzando le funzioni, e che l’invocazione di una funzione ha un costo rilevante, e questo rende più efficienti gli algoritmi iterativi.

LINK DI APPROFONDIMENTO PER L’ARGOMENTO:

Sottomatrici e operatore due punti in Matlab

MATLAB
I Vettori e le sottomatrici sono spesso usati in MATLAB per ottenere complessi effetti di manipolazione dei dati. L’operatore due punti, che viene spesso utilizzato in Matlab sia per generare vettori e sottomatrici di riferimento sia per indicizzare dei vettori, risulta fondamentale per la manipolazione efficiente di questi oggetti.

Un uso creativo delle sottomatrici e operatore due punti in Matlab consente di minimizzare l’uso di loop, che rallentano MATLAB, e rende il codice semplice e leggibile, senza che l’utente debba applicare alcuno sforzo per acquisire familiarità con essi.

L’ espressione 01:05 è in realtà il vettore riga [1 2 3 4 5]. I numeri non devono essere interi, né l’incremento deve essere necessariamente unitario. Per esempio:

0.2:0.2:1.2

ci permette di ottenere il vettore seguente

[0.2, 0.4, 0.6, 0.8, 1.0, 1.2]

mentre la notazione seguente:

5:-1:1

ci permette di ottenere il vettore seguente

[5 4 3 2 1]

Le dichiarazioni che seguono, per esempio, ci permettono di generare una tavola con i valori della funzione seno in specifici punti. Proviamo:

x = [0.0:0.1:7.0];
y = sin (x);
[x y]
plot(x,y)

Si noti che, poiché la funzione seno opera su ogni elemento del vettore argomento, si produce un vettore y degli stessi elementi del vettore x. In questo modo si ottiene il seguente grafico:

Sottomatrici e operatore due punti in Matlab

La notazione due punti può essere utilizzata per accedere a sottomatrici di una matrice. Allora definiamo una matrice A:

A = [1 2 3; 4 5 6; 7 8 9]

Allora per esempio digitando sulla riga di comando la seguente notazione

A (1:4,3)

si ottiene un vettore colonna costituito dai primi quattro elementi della terza colonna di A.
L’operatore due punti di per sé denota una riga o colonna:

A (:, 3)

è la terza colonna di A, mentre

A (1:4,:)

sono le prime quattro righe di A.

LINK DI APPROFONDIMENTO PER L’ARGOMENTO:

Come definire una funzione in Matlab

MATLAB
Le Funzioni in matlab sono M-file che possono accettare argomenti d’entrata e forniscono argomenti di uscita. Il nome dell’M-file e della funzione deve essere lo stesso. Le Funzioni operano su variabili definite nel workspace proprio, separato dal workspace a cui si accede all’ingresso di MATLAB, cioè le variabili usate all’interno della funzione sono locali.

Vediamo come definire una funzione in Matlab con parametri in ingresso e parametri in uscita. Si voglia costruire una funzione che, dati i lati ”a” e ”b” di un rettangolo fornisca l’area ”A”, il perimetro ”p” e la diagonale ”d”. Indichiamo con (a; b) la lista d’ingresso (parentesi tonde) e con [A; p; d] la lista d’uscita (parentesi quadre) (si noti la virgola fra i parametri).

function [ A , p , d ] =rettang ( a , b )
A = a * b; 
p = 2 * ( a + b );
d =sqrt ( a^2 + b^2 );

Si noti che non c’è confusione tra la lettera A (maiuscolo) e la a (minuscolo) perchè MATLAB distingue le lettere maiuscole dalle minuscole. Questa function, salvata con il nome rettang.m può essere richiamata da un altro modulo o direttamente dalla finestra comandi ad esempio con il comando:

[area; perim; diag] =rettang(2; 3)

Quindi la sintassi da utilizzare è la seguente:

function [lista d'uscita] = nome (lista d'ingresso)

Un buono esempio è fornito dalla funzione rank. L’M-file rank.m è disponibile nella directory toolbox/matlab/matfun. Si può lanciare il file digitando:

rank

Il file in questione è il seguente.

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.
s = svd(A);
if nargin==1
tol = max(size(A)) * max(s) * eps;
end
r = sum(s > tol);

La prima linea di una funzione M-file inizia con la funzione keyword. La quale da il nome alla funzione ed ordina gli argomenti. In questo caso,ci sono due argomenti di input ed uno di output. Le righe seguenti,che iniziano con il simbolo %, rappresentano dei commenti per un aiuto, non vengono considerate nell’applicazione. Queste linee si stampano quando si digita:

help rank

La prima linea del testo di aiuto è la H1 line che MATLAB espone quando si ricerca aiuto digitando help on nella directory che contiene la funzione. Il resto del file rappresenta codice eseguibile MATLAB definendo la funzione. La variabile s presente nel corpo della funzione, cosìcome le variabili sulla prima fila r, A e tol, sono del tutto locali alla funzione; sono indipendenti e separate da qualsiasi variabile nel workspace di MATLAB. Questo esempio illustra un aspetto delle funzioni di MATLAB, che ordinariamente non si trova negli altri linguaggi di programmazione , un numero variabile di argomenti. La funzione rank può essere usata in molti modi diversi:

rank(A)
r = rank(A)
r = rank(A,1.e-6)

Ricordiamo ancora una volta che se nessun argomento di output è fornito, il risultato è immagazzinato nella variabile ans. Se il secondo argomento di input non è fornito, la funzione calcola un valore di default. Fra il corpo della funzione, due quantità chiamate nargin e nargout sono disponibili, le quali ci dicono il numero di argomenti di input e di output coinvolti in ciascun uso della funzione. La funzione rank usa nargin, ma non ha bisogno di usare nargout.

LINK DI APPROFONDIMENTO PER L’ARGOMENTO: